III B. TECH I SEMESTER REGULAR EXAMINATIONS, DECEMBER - 2022 AUTOMATA THEORY AND COMPILER DESIGN

(Common to INF, CSO, AID and CSM)

Time: 3 Hours Max. Marks: 70

Note: Answer **ONE** question from each unit $(5 \times 14 = 70 \text{ Marks})$

UNIT-I

1. a) Draw NFA for the regular expression for ab*/ab.

[7M]

b) Construct a minimal DFA accepting all strings over δ {0,1} that [7M] do not contain 101 as a sub string?

(OR)

2. a) Construct DFA equivalent to the NFA ($\{p, q, r, s\}, \{0,1\}, \delta, p, \{s\}$) [7M] where the transition function is given in following table: Initial state p and final state s.

States	0	1
p	p, q	p
q	r	r
r	S	-
S	S	S

b) Construct finite automata that accept a string w, where w is [7M] binary number divisible by 3.

UNIT-II

3. a) Show that $L=\{a^{2n} \mid n>0\}$ is Regular.

[7M]

b) Define Derivation tree. Explain about LMD and RMD.

[7M]

(OR)

- 4. a) How to convert a regular expression to NFA? Explain with [7M] example.
 - b) Construct Finite Automata for the regular Expression [7M] 1(01+10)*00.

UNIT-III

5. a) Construct the PDA to the following grammar:

[7M]

 $S \rightarrow AB$

 $A \rightarrow BS/b$

B→SA/a

b) Write properties of recursive and recursively enumerable [7M] languages.

(OR)

6. a) List out the properties of PDA.

[7M]

b) Design Turing Machine for the Language L={ **a**ⁿ **b**ⁿ **c**ⁿ | **n≥1** }.

[7M]

01-12-2022 Page 1 of 2

UNIT-IV

7. a) Explain in detail about syntax directed translation. [7M]

b) What is Left Recursion? Eliminate left recursion from the [7M] following grammar:

A->Ac/Aad/bd/c.

(OR)

8. a) Give a model for LR parser. Write an algorithm for LR parsing. [7M]

b) Generate SLR parsing table for the following grammar [7M]

S → Aa | bAc | Bc | bBa

 $A \rightarrow d$

 $B \rightarrow d$

And parse the sentence "bdc".

UNIT-V

9. a) Explain reducible and non-reducible flow graphs with examples. [7M]

b) Explain in detail the procedure that eliminates global common [7M] sub expression.

(OR)

10. a) Explain in detail register allocation and assignment.

[7M]

b) Explain in detail about the garbage collection via Reference [7M] Counting.

* * * * *

01-12-2022 Page 2 of 2