III B. TECH I SEMESTER REGULAR EXAMINATIONS, DECEMBER - 2022 AUTOMATA THEORY AND COMPILER DESIGN (Common to INF, CSO, AID and CSM)
Time: 3 Hours
Max. Marks: 70
Note: Answer ONE question from each unit ($\mathbf{5 \times 1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Draw NFA for the regular expression for $a b^{*} / a b$.
b) Construct a minimal DFA accepting all strings over $\delta\{0,1\}$ that
do not contain 101 as a sub string?
(OR)
2. a) Construct DFA equivalent to the NFA ($\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\},\{0,1\}, \delta, \mathrm{p},\{\mathrm{s}\}$) [7M] where the transition function is given in following table: Initial state p and final state s.

States	$\mathbf{0}$	$\mathbf{1}$
p	p, q	p
q	r	r
r	s	-
s	s	s

b) Construct finite automata that accept a string w , where w is $[7 \mathrm{M}]$ binary number divisible by 3 .

UNIT-II
3. a) Show that $L=\left\{a^{2 n} \mid n>0\right\}$ is Regular.
b) Define Derivation tree. Explain about LMD and RMD.
4. a) How to convert a regular expression to NFA? Explain with [7M] example.
b) Construct Finite Automata for the regular Expression [7M] $1(01+10) * 00$.

UNIT-III

5. a) Construct the PDA to the following grammar:
$\mathrm{S} \rightarrow \mathrm{AB}$
$A \rightarrow B S / b$
$\mathrm{B} \rightarrow \mathrm{SA} / \mathrm{a}$
b) Write properties of recursive and recursively enumerable [7M] languages.
(OR)
6. a) List out the properties of PDA.
b) Design Turing Machine for the Language $L=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \geq \mathbf{1}\right\}$.

UNIT-IV
7. a) Explain in detail about syntax directed translation. [7M]
b) What is Left Recursion? Eliminate left recursion from the [7M] following grammar:
A->Ac/Aad/bd/c.

> (OR)
8. a) Give a model for LR parser. Write an algorithm for LR parsing. [7M]
b) Generate SLR parsing table for the following grammar [7M] $\mathrm{S} \rightarrow \mathrm{Aa}|\mathrm{bAc}| \mathrm{Bc} \mid \mathrm{bBa}$ $\mathrm{A} \rightarrow \mathrm{d}$ $\mathrm{B} \rightarrow \mathrm{d}$ And parse the sentence "bdc".
UNIT-V
9. a) Explain reducible and non-reducible flow graphs with examples. [7M]
b) Explain in detail the procedure that eliminates global common [7M]
sub expression.
(OR)
10. a) Explain in detail register allocation and assignment. [7M]
b) Explain in detail about the garbage collection via Reference [7M] Counting.

